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Real-World Scene Representations in High-Level Visual
Cortex: It’s the Spaces More Than the Places
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Real-world scenes are incredibly complex and heterogeneous, yet we are able to identify and categorize them effortlessly. In humans, the
ventral temporal parahippocampal place area (PPA) has been implicated in scene processing, but scene information is contained in many
visual areas, leaving their specific contributions unclear. Although early theories of PPA emphasized its role in spatial processing, more
recent reports of its function have emphasized semantic or contextual processing. Here, using functional imaging, we reconstructed the
organization of scene representations across human ventral visual cortex by analyzing the distributed response to 96 diverse real-world
scenes. We found that, although individual scenes could be decoded in both PPA and early visual cortex (EVC), the structure of repre-
sentations in these regions was vastly different. In both regions, spatial rather than semantic factors defined the structure of represen-
tations. However, in PPA, representations were defined primarily by the spatial factor of expanse (open, closed) and in EVC primarily by
distance (near, far). Furthermore, independent behavioral ratings of expanse and distance correlated strongly with representations in
PPA and peripheral EVC, respectively. In neither region was content (manmade, natural) a major contributor to the overall organization.
Furthermore, the response of PPA could not be used to decode the high-level semantic category of scenes even when spatial factors were
held constant, nor could category be decoded across different distances. These findings demonstrate, contrary to recent reports, that the
response PPA primarily reflects spatial, not categorical or contextual, aspects of real-world scenes.

Introduction
Despite the complexity and heterogeneity of scenes, scene pro-
cessing produces neural representations capable of supporting a
variety of tasks, including navigation, object identification, ex-
traction of semantic information, and guidance of visual atten-
tion. Although much of visual cortex clearly contributes to scene
processing, research has often focused on the parahippocampal
place area (PPA), which responds more strongly when people
view scenes or buildings than individual objects or faces (Aguirre
et al., 1998; Epstein and Kanwisher, 1998; Levy et al., 2001). Al-
though such scene selectivity suggests a specialized role in scene
processing, the precise information extracted by PPA and the
nature of the underlying neural representations remain unclear.

Some theories of PPA function suggest that it is primarily
involved in encoding the spatial layout of scenes (Maguire et al.,
1996; Epstein and Kanwisher, 1998; Park et al., 2011) and the
retrieval of familiar scenes (Rosenbaum et al., 2004; Epstein and
Higgins, 2007; Hayes et al., 2007). Consistent with these theories,
there are anatomical projections from parietal into parahip-
pocampal cortex (Kravitz et al., 2011) and anterograde amnesia

for scene layouts has been reported after damage to regions en-
compassing PPA (Aguirre and D’Esposito, 1999; Barrash et al.,
2000). However, more recent reports have proposed that PPA
maintains representations of the contextual associations of indi-
vidual objects rather than scenes, per se. (Bar, 2004; Bar et al.,
2008; Gronau et al., 2008) (but see Epstein and Ward, 2010).
Finally, it has been proposed that PPA is responsible for natural
scene categorization, distinguishing among high-level concep-
tual categories of scenes (e.g., beaches, buildings) (Walther et al.,
2009). Critically, however, other regions, such as early visual cor-
tex (EVC) and object-selective cortex, evidenced equivalent cat-
egorization of scenes, making it difficult to determine the unique
contribution of PPA.

The aim of the current study was to investigate, in a data-
driven manner, the structure of scene representations across hu-
man ventral visual cortex using the distributed response patterns.
We took advantage of the power of ungrouped event-related de-
signs (Kriegeskorte et al., 2006, 2008b; Kravitz et al., 2010) to test
a broad array of scenes from different categories, evenly divided
between manmade and natural scenes (Oliva and Torralba, 2001;
Joubert et al., 2007). Critically, we further controlled and evalu-
ated the contribution of spatial information, by choosing scenes
to equally span differences in expanse (open, closed) and relative
distance (near, far) (see Fig. 1) (Oliva and Torralba, 2001; Tor-
ralba and Oliva, 2003; Loschky and Larson, 2008; Greene and
Oliva, 2009b). Consistent with previous reports (Kay et al., 2008;
Walther et al., 2009), the identity of individual scenes could be
decoded in both EVC and PPA. However, PPA primarily grouped
scenes based on their expanse, whereas grouping in EVC was
generally weaker and based on relative distance. Furthermore, the

Received Sept. 1, 2010; revised March 3, 2011; accepted March 22, 2011.
Author contributions: D.J.K., C.S.P., and C.I.B. designed research; D.J.K. and C.S.P. performed research; D.J.K.

contributed unpublished reagents/analytic tools; D.J.K. analyzed data; D.J.K. and C.I.B. wrote the paper.
This work was supported by the National Institute of Mental Health Intramural Research Program. Thanks to

Marlene Behrmann, Assaf Harel, Alex Martin, Dale Stevens, and other members of the Laboratory of Brain and
Cognition, National Institute of Mental Health for helpful comments and discussion.

Correspondence should be addressed to Dwight J. Kravitz, 10 Center Drive, Room 3N228, Laboratory of Brain
Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892. E-mail:
kravitzd@mail.nih.gov.

DOI:10.1523/JNEUROSCI.4588-10.2011
Copyright © 2011 the authors 0270-6474/11/317322-12$15.00/0

7322 • The Journal of Neuroscience, May 18, 2011 • 31(20):7322–7333



observed grouping in PPA and EVC correlated strongly with be-
havioral judgments of expanse and relative distance, respectively.
Contrary to reports of contextual and category effects in PPA,
there was no grouping by content nor any ability to decode scene
category either within or across spatial factors. Together, these
findings indicate that representations in PPA primarily reflect
spatial and not category information.

Materials and Methods
Participants and testing. Ten participants (six female), ages 21–35 years,
participated in the functional magnetic resonance experiment. For one
participant, there was insufficient time to collect the localizer for EVC.
Six participants aged 21–28 years participated in the independent be-
havioral experiment. All participants had normal or corrected-to-
normal vision and gave written informed consent. The consent and
protocol were approved by the National Institutes of Health Institu-
tional Review Board.

Event-related fMRI stimuli and task. During the six event-related runs
of the fMRI experiment, participants were presented with 96 highly de-
tailed and diverse real-world scenes (1024 � 768 pixels, 20 � 15°) in a
randomized order for 500 ms each. Interstimulus intervals (4 –12 s) were
chosen to optimize the ability of the subsequent deconvolution to
extract responses to each scene using the optseq function from AFNI
(for Analysis of Functional NeuroImages)/Freesurfer.

To ensure fixation, participants performed a shape-judgment task on
the central fixation cross. Specifically, simultaneous with the presenta-
tion of each scene, one arm of the fixation cross grew slight longer and
participants indicated which arm grew via a button press. Which arm
grew was counterbalanced across scenes between runs, such that both
arms grew equally often with each scene. We used this task, which was

orthogonal to scenes, to measure the structure
of scene representations without introducing
any confounds or feedback effects caused by
task.

The scenes were selected to span the stimu-
lus domain as broadly as possible. Scenes were
constrained to represent naturalistic (eye-
level) views. The scenes were taken from 16
categories (six exemplars each), divided evenly
by content (manmade, natural) (Oliva and
Torralba, 2001; Joubert et al., 2007). To test for
the relative importance of spatial information,
scenes within these categories were chosen to
equally span two spatial dichotomies thought
to be important for scene perception: expanse
(open, closed: the spatial boundary of the
scene) and relative distance (near, far: distance
to the nearest foreground objects) (Oliva and
Torralba, 2001; Torralba and Oliva, 2003;
Loschky and Larson, 2008; Greene and Oliva,
2009b; Ross and Oliva, 2010) (Fig. 1) (for full
stimulus set, see supplemental Item 1, available
at www.jneurosci.org as supplemental mate-
rial). Scenes were identified as belonging to a
particular level of a dichotomy (e.g., open,
closed), based on agreement among the au-
thors. In the case of open and closed scenes,
which differed in their spatial boundaries,
and content, which differed in their constit-
uent objects, the differences were quite clear.
Relative distance was defined within each
category, and thus exemplars differed con-
siderably in vergence cues and the amount of
space depicted, making attributions to either
near or far simple. Because each of the 16
categories had both near and far exemplars,
each scene reflected one of eight possible
classifications (Fig. 1, manmade/closed/near
top left two images). Note that all scenes dif-

fered from one another at an individual level in their spatial layout.
fMRI localizer stimuli and task. Four independent block-design scans

were also collected in each participant to localize scene-selective, object-
selective, and face-selective and EVC regions of interest (ROIs). Each of
these scans was an on/off design with alternating blocks of stimuli pre-
sented while participants either performed a one-back task (for object,
face, scene localizers) or simply maintained fixation (EVC). Scene-
selective cortex was localized with the contrast of scenes versus faces,
object-selective cortex with the contrast of objects versus retinotopically
matched scrambled objects (Kravitz et al., 2010), and face-selective cor-
tex with the contrast of faces versus objects. Scene, object, and face im-
ages were grayscale photographs. Peripheral (pEVC) and central (cEVC)
EVC were localized with the contrast of central (5°) and peripheral (6 –
15°) flickering (8 Hz) checkerboards.

fMRI scanning parameters. Participants were scanned on a research-
dedicated GE 3 tesla Signa scanner located in the Clinical Research Cen-
ter on the National Institutes of Health campus (Bethesda, MD). Partial
volumes of the temporal and occipital cortices were acquired using an
eight-channel head coil (22 slices; 2 � 2 � 2 mm; 0.2 mm interslice gap;
TR, 2 s; TE, 30 ms; matrix size, 96 � 96; FOV, 192 mm). In all scans,
oblique slices were oriented approximately parallel to the base of the
temporal lobe and generally covered the temporal lobe from its most
inferior extent to the superior temporal sulcus and extended posteriorly
through all of early visual cortex. Six event-related runs (263 TRs) and
eight localizer scans (144 TRs) were acquired in each session.

fMRI preprocessing. Data were analyzed using the AFNI software pack-
age (http://afni.nimh.nih.gov/afni). Before statistical analysis, all of the
images for each participant were motion corrected to the first image of their
first run after removal of the first and last eight TRs from each run. After

Figure 1. Stimulus selection. Scenes were chosen from a broad array of high-level conceptual categories (supplemental Item 1,
available at www.jneurosci.org as supplemental material) and equally spanned three dichotomies: content (manmade, natural),
expanse (open, closed), and relative distance (near, far). Near and far scenes were differentiated by the relative distance between
the viewer and foreground objects within a scene category. Manmade and natural scenes differed in whether the majority of the
scene contained artificial or natural objects. Open and closed scenes were defined by whether the scene implied the viewer was in
an enclosed space.
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motion correction, the localizer runs (but not the event-related runs) were
smoothed with a 3 mm full-width at half-maximum Gaussian kernel.

fMRI statistical analysis. ROIs were created for each participant from
the localizer runs. Significance maps of the brain were computed by
performing a correlation analysis thresholded at a p value of 0.0001 (un-
corrected). ROIs were generated from these maps by taking the contig-
uous clusters of voxels that exceeded threshold and occupied the
appropriate anatomical location based on previous studies (Sayres
and Grill-Spector, 2008; Schwarzlose et al., 2008). To ensure that all
ROIs were mutually exclusive, we used the following precedence rules
to remove overlapping voxels. First, if a voxel showed any position
selectivity (center vs periphery), it was deemed retinotopic and ex-
cluded from all the category-selective ROIs. Category selectivity is, by
necessity, always established by the contrast of two retinotopically
distinct categories, and the demonstration that voxel shows any po-
sition effects suggests that its selectivity is attributable to simple reti-
notopy. Second, any voxel that showed selectivity to faces or scenes
but did not differentially respond to central or peripheral checker-
boards was deemed selective for those categories. Third, any voxel
that showed a stronger response to objects than scrambled objects but
did not respond differentially to the checkerboards and did not re-
spond more to faces or scenes than objects was included in the object-
selective ROIs.

Furthermore, all of the analyses presented below were also performed
with all overlapping voxels removed from every ROI, and no significant
changes in the results occurred. Finally, we also performed all of the
analyses of PPA and pEVC with matching voxel sizes by randomly sub-
sampling pEVC and found no qualitative differences in any of the re-
ported results.

We conducted a standard general linear model using the AFNI
software package to deconvolve the event-related responses. Our ex-
periment combined a sparse event-related design with multivoxel
pattern analysis, allowing us to assess the response to each individual
stimulus and not average across a priori categories of stimuli (un-
grouped design). Response patterns in the event-related runs were
created by performing t tests between each condition and baseline.
The t values for each condition were then extracted from the voxels
within each ROI, and we then used an iterative variant (MacEvoy and
Epstein, 2007; Chan et al., 2010; Kravitz et al., 2010) of split-half
correlation analysis (Haxby et al., 2001; Williams et al., 2008) to
establish the similarity between the response patterns of each pair of
scenes, once the mean signal was independently removed from each
half of the data. This yielded similarity matrices that represent the
similarity in the spatial pattern of response across the ROI between
each pair of conditions. t values were used because they reduced the
impact of noisy voxels on the patterns of response (Misaki et al.,
2010), and nearly equivalent results were obtained using the coeffi-
cients. Also, to rule out baseline activity differences as the source of
any observed effects, all analyses were performed with and without
the mean activity removed. The main effect of the removal of the
mean activity was a normalization of the data leading to an increase in
the structure of resulting similarity matrices and reduction in the
overall level of correlation. However, there were no qualitative or
significant effects on any of the grouping or discrimination results.

All analyses were also repeated after applying a Fisher transformation
to the correlation values. No qualitative or significant effects on any of
the results was observed, which is unsurprising given that none of the
correlations approached either 1 or �1 and correlations near to zero
approximate the normal distribution.

Selectivity analysis. To investigate the distribution of scene informa-
tion throughout the whole volume, we performed a novel selectivity
analysis. Typical information-based mapping uses a searchlight, which
determines what information is available in the response of a local
cluster of voxels. Although useful, this approach is forced to assume
that information is present only in these local clusters, constrains the
sort of information being searched for, and introduces non-
independence between adjacent voxels. Our analysis avoids these
problems and simply evaluates whether each individual voxel shows

any consistent selectivity among our set of 96 stimuli across indepen-
dent halves of the data.

To determine whether a particular voxel exhibits consistent selectivity
among our set of stimuli, we smoothed the event-related data to 3 mm to
match our block-design localizers and divided the data into two indepen-
dent halves, using the same iterative procedure we used for the similarity
analysis. We then correlated the relative levels of activation to each of the
96 scenes across the two halves of the data. If a particular voxel is respon-
sive to, but not selective among, our set of scenes, it will produce two sets
of responses in the two halves of data that may have the same distribution
(i.e., mean, SD), but there will be no correlation between the rank order-
ing of the responses. Alternatively, a voxel that is both responsive and
selective will produce a correlated pattern of selectivity between the two
halves of the data. The correlation value assigned to each voxel therefore
indicated its consistency of selectivity across our stimuli. These values
were then averaged across all the voxels within a region within each
participant.

To establish whether a cluster of voxels showed significant selectivity,
we used a cluster threshold based on the following randomization pro-
cedure. First, we took the data from the independent halves of the data in
each participant and then randomized the condition labels and corre-
lated the selectivity. Importantly, the randomization was the same for
every voxel, maintaining any non-stimulus-specific relationships
between voxels. We then searched the entire volume for the largest con-
tiguous cluster of voxels with correlation values greater than r � 0.168
( p � 0.05). We repeated this procedure 10,000 times for each participant
and derived the minimum cluster size that occurred in �5% of the iter-
ations. This cluster size served as a participant-specific threshold for
determining which clusters of voxels (r � 0.168, p � 0.05) were signifi-
cant. The average threshold for cluster size was �12.

Behavioral experiment. Twelve new participants completed three ses-
sions of 576 trials, during which they judged which of a pair of scenes was
either more open (expanse), more natural (content), or more distant
(distance). Importantly, no specific instructions were given to the partic-
ipants about what defined each of the dimensions; they were left free to
rate stimuli based on their intuitions about the labels given. Ideally, we
would have directly measured relative distance within each category of
stimuli, but that would have required informing participants of the cat-
egories and/or limiting the trials to only comparisons within a category,
both of which would have introduced task confounds into our measure
of distance.

On each trial, participants were sequentially presented with two scenes
from our set of 96 for 500 ms each with a 1 s blank screen between.
Participants indicated their chosen scene via a button press. The order of
these sessions (expanse, content, distance) was counterbalanced across
participants. Furthermore, the trials were chosen such that no trial was
ever repeated across participants, so that as many of the comparisons as
possible were made.

Because there were not enough trials available to probe every single
possible comparison (4560) within a single participant, trials were con-
catenated across participants. To determine a ranking across our stimu-
lus set for expanse, distance, and content, Elo ratings (Elo, 1978) were
derived in the following manner. Each scene was given an initial Elo
rating of 1000. Each trial was treated as a match between the two
scenes, and the losers and winners rankings were adjusted according
to the standard Elo formula (Meng et al., 2010). The final rankings for
each scene reflect their relative ranking along the dimension of inter-
est. Because the order of matches impacts the final Elo ratings, 10,000
iterations of this procedure with different random trial orders were
averaged together.

Results
The purpose of this study was to perform a data-driven investi-
gation of scene representations across the ventral visual cortex.
We presented 96 highly detailed and diverse scenes chosen to
both broadly cover the stimulus domain. The scenes were bal-
anced in such a way as to allow us to evaluate the relative contri-
butions of nonspatial factors, such as content (manmade,
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natural) and high-level category (e.g., beaches, highways), and
spatial factors, such as expanse (open, closed) and relative dis-
tance (near, far), to scene representations. None of these factors
had any preferential status within any of the subsequent analyses,
and there was no bias in our design for any, all, or none of these
factors or categories to emerge.

Representational structure within cortical regions
In our first test of scene representations, we independently localized
scene-, object-, and face-selective regions as well as retinotopic EVC
in both hemispheres. Given the limited acquisition volume possible
at our high resolution (2 � 2 � 2 mm), our scene-selective regions
included both transverse occipital sulcus (TOS) (Epstein et al., 2007)
and PPA but not retrosplenial cortex (Epstein and Higgins, 2007).
We divided EVC into pEVC and cEVC, given evidence for a periph-
eral bias in PPA (Levy et al., 2001; Hasson et al., 2002) and for the
differential involvement of central and peripheral space in scene per-
ception (Larson and Loschky, 2009). We will focus initially on com-
paring and contrasting PPA and pEVC, the regions that showed the
strongest discrimination and most structured representations.

Within each region, we extracted the pattern of response
across voxels to each of the 96 scenes. We then cross-correlated
these response patterns to establish the similarity between the
response patterns of each pair of scenes. This analysis yielded a
96 � 96 similarity matrix for each region (Fig. 2a,b) wherein each

point represents the correlation or simi-
larity between a pair of scenes (Krieges-
korte et al., 2008a; Drucker and Aguirre,
2009). These matrices can be decomposed
into two components. First, the points
along the main diagonal, from the top left
to bottom right corner of the matrix, rep-
resent the consistency of the response pat-
terns for the same scene across the two
halves of the data (within-scene correla-
tions). Second, the points off the diagonal
are the correlations between pairs of differ-
ent scenes (between-scene correlations).
These two components can be used to pro-
vide information about both categorization
and discrimination of scenes. Specifically,
the between-scene correlations define
how a region groups scene together (cat-
egorization). In contrast, significantly
greater within- than between-scene correla-
tions indicate that the region can distinguish
between individual scenes from one another
(discrimination).

Given previous results on categoriza-
tion in PPA, we first ordered the raw sim-
ilarity matrices by scene category and
divided scenes by content into manmade
and natural. For PPA and pEVC (Fig.
2a,b), it is clear that the patterns of re-
sponse contain rich information about
the presented scenes. In both regions, the
within-scene correlations (diagonal) are
on average stronger than the between-
scene correlations (off-diagonal), indicat-
ing an ability to discriminate scenes. This
effect is particularly prominent in pEVC
(Fig. 2b). However, there is very little
structure to the between-scene correla-

tions in pEVC and only mild grouping evident in PPA. Further-
more, neither region shows any consistent grouping of manmade
and natural scenes. To better visualize this structure, we averaged
the between-scene correlations by high-level category (Fig. 2c,d).
In these matrices, the points along the main diagonal reflect the
coherence of a scene category. Even within these average matri-
ces, there is only weak evidence for coherent scene categories in
PPA (Fig. 2c, high within-category correlations for Living Rooms
and Ice Caves) and no obvious coherent categories in pEVC (Fig.
2d). Furthermore, even among the most coherent categories in
PPA, there are between-category correlations that violate differ-
ences in content. For example, Living Rooms and Ice Caves are
well correlated despite vast differences in content and low-level
stimulus properties (e.g., color, spatial frequency, luminance,
etc).

To better visualize the structure of scene representations in
both regions, without assuming the importance of scene catego-
ries, we used multidimensional scaling (MDS) (Kriegeskorte et
al., 2008a). Each scene was positioned on two-dimensional plane,
in which the distance between any pair of scenes reflects the cor-
relation between their response patterns (the higher the correla-
tion the closer the distance) (Fig. 3a,b). This visualization reveals
a very striking structure not captured by scene categories in either
PPA or pEVC. In PPA, there is clear grouping by expanse, with
open scenes to the right and closed scenes to the left. In pEVC,

Figure 2. Similarity matrices for PPA and pEVC. a, b, Raw similarity matrices for PPA (a) and pEVC (b) averaged across partic-
ipants. The matrices comprise 96 � 96 elements, with each point reflecting the amount of correlation in the pattern of response
between a pair of scenes. The main diagonal in each matrix from the top left to bottom right corner are the correlations between
a scene and itself in the two halves of the data. The matrices are ordered by high-level category, and dashed lines indicate divisions
between those categories. The solid lines indicate the division between manmade and natural scenes. Note that, although for both
PPA and pEVC the main diagonal shows on average higher correlations than the off-diagonal elements (indicating scene discrim-
ination), there is very little grouping evident in either matrix. c, d, Between-scene correlations from a and b averaged by high-level
conceptual category. The main diagonal in these plots reflects the coherence of a high-level category and the off-diagonal repre-
sent correlations between categories of scenes. Although some categories appear to exhibit a degree of coherence, note, for
example, the high correlations between Living Rooms and Ice Caves, as well as Hills and Harbors, which differ markedly in
high-level conceptual properties.
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grouping was weaker but defined by rela-
tive distance. We verified the strength of
these differential groupings between the
two regions by reordering the raw similar-
ity matrices (Fig. 2) by these dichotomies
(Fig. 3c,d) rather than high-level category.
Note that, in some cases, the difference in
the structure of scene representations be-
tween PPA and pEVC caused large shifts
in the pairwise similarity of individual
scenes. For example, a church image and a
canyon image were similarly categorized
by PPA (Fig. 3a, yellow boxes), reflecting
enclosed structure, whereas in pEVC, they
were categorized as dissimilar (Fig. 3b,
yellow boxes) because they had different
relative distances. In the following sec-
tion, we quantify these differences in
representational structure between the
regions.

Comparison of the representational
structure in PPA and pEVC
We directly quantified the relative contri-
butions of expanse, relative distance, and
content by averaging the between-scene
correlations (off-diagonal) across the
eight different combinations of the three
dichotomies (Fig. 4a,b). We then averaged
each row of these matrices according the
correlation within and between the vari-
ous levels of expanse, relative distance,
and content (Fig. 4c,d). The resulting cor-
relations were then entered into a four-
way repeated-measures ANOVA with
expanse (same, different), relative dis-
tance (same, different), content (same,
different), and region (PPA, pEVC) as
factors.

Grouping was weaker in pEVC than PPA (see also discrimi-
nation analysis below) with lower between-scene correlations,
resulting in a significant main effect of region (F(1,8) � 19.269,
p � 0.01). Furthermore, the contributions of relative distance
and expanse were different in the two regions, resulting in
highly significant interactions between region � expanse (F(1,8)

� 33.709, p � 0.001) and region � relative distance (F(1,8) �
24.361, p � 0.01). Notably, content was not a major contributor
to grouping in either region, and no main effects or interactions
involving content (all p � 0.16) were observed.

To investigate the differential grouping in the two regions
further, data from each region were entered independently in two
repeated-measures ANOVAs. In pEVC, relative distance was the
only significant factor producing grouping (F(1,8) � 30.554, p �
0.001), and no main effect of expanse or content ( p � 0.12) was
observed. In contrast, in PPA, expanse was the primary factor
producing grouping (F(1,9) � 44.419, p � 0.001), although there
was a smaller effect of relative distance (F(1,9) � 18.152, p � 0.01).
No interactions between expanse � relative distance were found
either within or across the ROIs ( p � 0.2). Again, content played
no role in grouping, with no main effects or interactions involv-
ing content ( p � 0.15). Furthermore, even when the matrices
were averaged by the semantic categories (e.g., beaches, moun-
tains) used in previous studies (Walther et al., 2009), expanse

remained the dominant factor producing grouping (supplemen-
tal Item 2, available at www.jneurosci.org as supplemental mate-
rial) (also see below).

Thus, neither PPA nor pEVC show effects of scene category or
content. Instead, both regions group scenes by their spatial as-
pects, with pEVC showing grouping by relative distance and PPA
grouping primarily by expanse. Although the weaker categoriza-
tion by relative distance in PPA may suggest that some aspects of
scene categorization are inherited from pEVC, the absence of an
effect of expanse in pEVC implies that the structure of scene
representations is transformed between pEVC and PPA.

Comparison of behavior and scene representations in PPA
and pEVC
Multivariate designs, by virtue of their large number of condi-
tions, produce data that can be directly correlated with behavior
at an individual item level (Kriegeskorte et al., 2008a; Drucker
and Aguirre, 2009). To assess whether the representational struc-
ture we observed in PPA and pEVC was reflected in behavior, we
next directly tested whether the structure of scene representations
we measured in PPA and pEVC agreed, at the level of individual
scenes, with subjective behavioral ratings from a new set of six
participants. The task and instructions used in collecting behav-
ioral judgments will inevitably constrain the resulting data.

Figure 3. MDS plots for PPA and pEVC. a, b, MDS from PPA (a) and pEVC (b). The main plots and the insets to the right contain
the same data points. In the main plots, the scenes are plotted directly, whereas in the insets, the scenes are represented by
symbols that reflect the levels of expanse and relative distance. Note that, in PPA, the scenes group by expanse (red vs blue
symbols), whereas in pEVC, the scenes group by relative distance (circles vs triangles). The four highlighted scenes (2 yellow boxes,
2 green boxes) in each plot were chosen to highlight the difference in the similarity between pairs of scenes in the two ROIs. The two
scenes highlighted in green share the same expanse but differ in relative distance, whereas the scenes highlighted in yellow share
relative distance but differ in expanse. Note the difference in their relative positions in the MDS plots from PPA and pEVC. c, d, Raw
similarity matrices for PPA (c) and pEVC (d) from Figure 2, a and b, reordered by expanse and relative distance. Solid lines indicate
a distinction between open and closed scenes, whereas the dashed lines indicate a distinction between near and far scenes. In PPA
(c), note the clear clustering of strong correlations between scenes that shared the same expanse (top left and bottom right
quadrant) and the clustering of weak correlation between scenes with different scene boundaries (bottom left and top right
quadrants). In contrast, in pEVC, note the clustering of strong correlation between scenes that shared relative distance, evident as
a checkerboard pattern.
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Therefore, we provided as little instruction as possible, simply
asking participants to report which of a sequential pairs of scenes
was more open (expanse), more natural (content), or more dis-
tant (distance). Participants were free to interpret these labels as
they wanted. We used Elo ratings (see Materials and Methods) to
derive a ranking for each individual scene for each of the three
dichotomies. These rankings turn our dichotomies into dimen-
sions, in which the rating of a scene reflects its subjective open-
ness, naturalness, or depth relative to the other 95 scenes.

First, we used the Elo ratings as independent confirmation of
our dichotomies. The content dichotomy was the most clearly
reflected in the Elo ratings, with 46 of 48 of the top ranked scenes
being natural scenes. The expanse dichotomy was similarly
strong, with 40 of 48 of the top ranked scenes being open scenes.
To calculate the strength of the relative distance dichotomy, we
counted the number of times the far exemplars of a particular
high-level category of scene were rated more highly than the near
exemplars in that category, which was true for 40 of 48 scenes. To
assess the reliability of the ratings, we divided the 12 participants
into two groups of six and calculated Elo ratings for each group
separately. The ratings for all three dichotomies were highly cor-
related (expanse, r � 0.92; content, r � 0.94; relative distance, r �
0.86; all p � 0.0001) across the groups, verifying the reliability of the
Elo ratings. Thus, independent ratings of the individual scenes by
naive observers reliably confirm our original classifications.

Next, we directly compared the Elo ratings with the scene
representations we recovered with fMRI in PPA and pEVC. We

calculated an fMRI grouping score from the average similarity
matrices (Fig. 3c,d) for each scene that reflected how strongly
grouped that scene was within a particular dichotomy. For exam-
ple, the expanse score for a scene was calculated by subtracting its
average correlation with the closed scenes from its average corre-
lation with the open scenes. We then correlated these fMRI
grouping scores with their respective Elo ratings to determine
whether scene representations in each region reflected the behav-
ioral rankings of scenes.

For expanse, we found a very strong correlation between the
Elo ratings and expanse scores in PPA (r � 0.67, p � 0.0001) (Fig.
5a) but not in pEVC (r � 0.08, p � 0.1) (Fig. 5b). This difference
in correlation was significant (z � 2.16, p � 0.05), suggesting that
the pattern of response in PPA more closely reflects behavioral
judgments of expanse than does the pattern in pEVC. For con-
tent, we found no correlations in either PPA (r � 0.10, p � 0.1)
(Fig. 5c) or pEVC (r � 0.07, p � 0.1) (Fig. 5d). Furthermore, in
PPA, this correlation was significantly weaker than the correla-
tion between Elo ratings and expanse scores (z � 2.99, p � 0.05),
demonstrating that there is a stronger relationship between scene
representations in PPA and judgments of expanse than judg-
ments of content. For distance, we found equivalent correlations
( p � 0.1) in both PPA (r � 0.54, p � 0.0001) (Fig. 5e) and pEVC
(r � 0.31, p � 0.01), consistent with the grouping we observed in
both regions. Based on our previous analysis, it might have been
expected that the correlation with distance would have been
stronger in pEVC than PPA. Their equivalent correlations may
reflect a weaker direct contribution of pEVC to conscious judg-
ments about scenes than PPA.

These correlations between the structure of scene representa-
tions in fMRI and behavior suggest that the pattern of response in
PPA much more strongly reflects subjective judgments about
spatial aspects of scenes (expanse, distance) than the content of
those same scenes. In contrast, the pattern of response in pEVC
reflected only judgments of the distance of those scenes, provid-
ing converging evidence for the different scene information cap-
tured in pEVC and PPA. Furthermore, these results show that,
regardless of what visual statistics drive the responses of pEVC
and PPA, the representations they contain directly reflect, and
perhaps even contribute to, subjective judgments of high-level
spatial aspects of complex scenes.

High-level category information in PPA within and across
spatial factors
Our previous analyses confirmed that spatial factors have a
greater impact on the structure of scene representations in PPA
than nonspatial factors. To directly test whether there was any
high-level category information independent from spatial fac-
tors, we next considered whether (1) scene category could be
decoded when spatial factors were held constant or do scenes
from different categories, but with similar spatial properties elicit
similar response, and (2) whether scene category could be de-
coded across spatial factors, or do scenes from the same category,
but with different spatial properties, elicit different responses.
Because expanse is primarily confounded with category (e.g., all
mountain scenes will be open), item 2 could only be tested across
relative distance.

To perform these analyses, we needed to consider the near and
far exemplars of each of the 16 high-level categories separately
(Fig. 1), effectively doubling the number of categories to 32. We
then averaged the off-diagonal correlation from the raw similar-
ity matrix for PPA (Fig. 3c) by scene category (Fig. 6a). The points
along the diagonal of this matrix represent the average correla-

Figure 4. Categorization in PPA and pEVC. a, b, The off-diagonal points from the raw matrix
from Figure 2, a and b, averaged by the eight combinations of expanse, relative distance, and
content. The solid lines again denote divisions between closed and open scenes, whereas the
dashed lines indicate divisions between near and far scenes. Manmade and natural scenes
alternate in that order, such that the first point within any of the small boxes defined by the
dotted lines is the average of the manmade scenes and the second is the average of the natural
scenes. c, d, Bar plots of the average effects of expanse, relative distance, and content on
categorization. Averages were created by averaging across the rows of the matrix after they had
been aligned such that switches between the levels of the factors were in agreement. For
example, the first solid green bar represents the average effect of keeping expanse and content
constant but varying relative distance for all eight of the possible crossings of the three factors.
Solid and hashed bars indicate the division between same and different expanse. Effect of
holding content constant is plotted in the left, whereas the effect of changing content is plotted
in right. In PPA (c), note the large effect of changing expanse (solid vs hashed bars). In contrast
in pEVC, note that changing relative distance has the largest effect (orange vs green bars). All
error bars indicate the between-subjects SEM.
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tion between exemplars of each category.
The off-diagonal points represent the cor-
relations between different scene catego-
ries or between the near and far exemplars
of the same category [Fig. 6a, white
ellipses].

To establish whether categories could
be distinguished from one another when
they shared both expanse and relative dis-
tance, discrimination indices were calcu-
lated for each category within each
combination of the spatial factors (Fig.
6b). These discrimination indices were
defined as the difference between the cor-
relation of a category with itself [Fig. 6a]
and the average correlation between that
category and the other categories that
shared expanse and relative distance.
These indices were entered into a one-way
ANOVA with scene category (32) as a fac-
tor. No main effect of scene category was
observed ( p � 0.15), nor was there sig-
nificant discrimination across the scene
categories on average ( p � 0.15), nor
did any individual category evidence
significant discrimination with a Bon-
ferroni’s correction for multiple com-
parisons ( p � 0.3). To apply the most
liberal test for category information
possible, we conducted one-tailed t tests
for each scene category. We found only
a single category (near cities) (Fig. 6c)
that evidenced any decoding ( p � 0.05,
uncorrected). Thus, even when spatial factors are held con-
stant, we found no strong evidence for scene category
representations.

To establish whether high-level scene category could be de-
coded across variations in spatial factors, we calculated discrim-
ination indices for each category across the two levels of relative
distance (Fig. 6d). These discrimination indices were defined as
the difference between the correlation of the near and far exem-
plars of a category with each other [Fig. 6a, white ellipses] and the
average correlation between the near and far exemplars of that
category and other categories. These indices were entered into a
one-way ANOVA with scene category (16) as a factor. No main
effect of scene category was observed ( p � 0.375), nor was there
significant discrimination across the scene categories on average
( p � 0.15), nor did any individual category evidence significant
discrimination with a Bonferroni’s correction for multiple com-
parisons (all p � 0.3). Again, we applied the most liberal test for
category information and conducted one-tailed t tests for each
scene category. We found only a single category (living rooms)
that evidenced any decoding ( p � 0.05, uncorrected).

In summary, in contrast to reports emphasizing the represen-
tation of scene category in PPA (Walther et al., 2009), we found
no evidence for decoding of scene categories in PPA when spatial
factors are controlled. We found no ability to decode high-level
category across different levels of relative distance. We found no
evidence for content as a significant contributor to the overall
structure of representations in PPA or pEVC. We also found no
correlation between scene representations in PPA or pEVC and
subjective judgments of content and significantly weaker behav-
ioral correlations for content than expanse. Although it is possi-

ble that these nonspatial factors do have some impact on scene
representations in these regions, that impact is clearly minor
compared with the spatial factors of expanse and relative
distance.

Scene discrimination in PPA and pEVC
Although the grouping of between-scene correlations provides
insight into how these regions categorize scenes, the difference
between within- and between-scene correlations provides an in-
dex of scene discrimination. For this analysis, it was critical that
we consider only between-scene correlations that did not cross
any grouping boundary. Otherwise, our discrimination measure
would be implicitly confounded with grouping. Given the strong
evidence for both expanse and relative distance as categories,
we consider discrimination between scenes within the combi-
nations of these factors separately (four white squares encom-
passing the main diagonal in Fig. 2a,b), collapsing across
differences in content.

Within- and between-scene correlations were extracted from
each of the four combinations of expanse and relative distance
(supplemental Item 3, available at www.jneurosci.org as supple-
mental material). These correlations were then averaged and sub-
tracted from one another to yield discrimination scores (Fig.
7a,b). There was a broad ability to discriminate scenes in both
regions, with significant discrimination ( p � 0.05) observed in
every condition except for near, closed scenes in PPA. To inves-
tigate the pattern of discrimination between the two regions,
discrimination scores were entered into a three-way repeated-
measures ANOVA with expanse (open, closed), relative distance
(near, far), and region (PPA, pEVC) as factors. Discrimination

Figure 5. Comparison of behavioral and imaging data. a, Scatter plot of the Elo ratings for expanse derived from the behavioral
experiment against the expanse score calculated from the average similarity matrix in PPA (Fig. 3c) for each scene image. fMRI
scores for each scene were calculated by subtracting its average correlation with the closed scenes from its average correlation with
the open scenes. A zero fMRI score (horizontal dotted line) indicates equivalent correlation with both open and closed scenes. An
Elo score of 1000 (vertical dotted line) indicates that the scene has an average expanse. Note the strong correlation between the
fMRI and behavioral measures. Note also the large spread of fMRI scores along the y-axis, reflecting the strong grouping by
expanse. b, Same as a but for pEVC. Note the significantly lower correlation between the fMRI and behavioral measures and the
smaller spread along the y-axis. c, d, Same as a and b, respectively, but now considering content rather than expanse. Note the
significantly lower correlation in PPA than was observed with expanse and the lack of correlation in pEVC. e, f, Same as a and b,
respectively, but now considering distance rather than expanse. Note the correlation between the fMRI and behavioral measures
in both regions. Note also the larger spread along the y-axis in f, reflecting the stronger grouping by distance in pEVC.
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was stronger in pEVC that PPA, resulting in a significant main
effect of ROI (F(1,8) � 18.838, p � 0.01). Discrimination was also
generally stronger for near than far scenes, resulting in a signifi-
cant main effect of relative distance (F(1,9) � 9.793, p � 0.05),
although this effect was stronger in pEVC, resulting in a signifi-
cant interaction between region � relative distance (F(1,8) �
8.898, p � 0.05). Separate ANOVAs within each region confirmed
the larger effect of relative distance in pEVC (F(1,8) � 15.477, p �
0.01) than in PPA (F(1,9) � 5.328, p � 0.05) but revealed no addi-
tional effects (all p � 0.3). These results demonstrate that, even
within scenes that are grouped together, there is significant informa-
tion about the individual scenes.

The gross pattern of scene discrimination was very similar in
both pEVC and PPA. To investigate the relationship between
discriminability in the two regions in greater detail, we calculated
discrimination indices for each individual scene and then corre-
lated them across pEVC and PPA (Fig. 7c). The high correlation

(r � 0.659, p � 0.001) between the dis-
crimination indices suggests that the dis-
tinctiveness of the representation of a
scene in PPA is directly related to its dis-
tinctiveness in pEVC.

Together, the results of the discrimina-
tion and categorization analyses suggest a
transformation of scene representations
between pEVC and PPA. Clearly the dis-
criminability of scene representations in
PPA reflects discriminability in pEVC.
However, PPA sacrifices some scene dis-
criminability, perhaps to better categorize
scenes by their spatial expanse. Thus, PPA
maintains less distinct representations of
scenes that seem broadly organized to
capture spatial aspects of scenes.

Categorization and discrimination in
other cortical regions
In addition to PPA and pEVC, we also in-
vestigated cEVC, TOS, object-selective re-
gions lateral occipital (LO) and posterior
fusiform sulcus (PFs), and the face-
selective occipital face area (OFA) and
fusiform face area (FFA).

cEVC was similar to pEVC in its pat-
tern of discrimination (supplemental
Item 4, available at www.jneurosci.org as
supplemental material) but showed no
scene categorization. This difference in
categorization between cEVC and pEVC
led to a significant relative distance � re-
gion interaction (F(1,8) � 29.901, p �
0.01) when categorization averages were
entered into a four-way ANOVA with ex-
panse, relative distance, content, and re-
gion (cEVC, pEVC) as factors. This
suggests that pEVC contains more struc-
tured scene representations than cEVC
and highlights the likely importance of
pEVC in scene processing (Levy et al.,
2001; Hasson et al., 2002). However, it
must be noted that cEVC represents the
portion of space containing the fixation
cross, on which the participants were

performing the task. Although the cross was very small
(�0.5°) relative to the central localizer (5°), it cannot be ruled
out that this overlap impacted results in cEVC.

Scene representations in TOS had a structure similar to PPA
but were less categorical. Scene discrimination in TOS and PPA
were similar (supplemental Item 4, available at www.jneurosci.
org as supplemental material), but categorization by expanse was
weaker. This weaker categorization led to a significant interaction
between expanse � region (F(1,9) � 11.714, p � 0.01) when cat-
egorization averages from TOS and PPA were entered in a four-
way ANOVA. In TOS, as in PPA, there was a trend for weak
categorization by relative distance (F(1,9) � 4.548, p � 0.06) and
no effects involving content (all p � 0.25).

The object-selective regions (supplemental Item 5, available at
www.jneurosci.org as supplemental material) did not seem par-
ticularly involved in processing the scene stimuli. LO evidenced
some weak discrimination of scenes and no categorization by any

Figure 6. High-level category discrimination in PPA controlling for spatial factors. a, Similarity matrix for PPA averaged by
high-level category with spatial factors held constant. Controlling for relative distance effectively doubles the number of high-level
categories, as each category had both near and far exemplars. The first eight categories are the near instances of churches, concert
halls, hallways, living rooms, canopies, canyons, caves, and ice caves, followed by the far instances of those same categories. The
next eight categories are the near instances of cities, harbors, highways, suburbs, beaches, deserts, hills, and mountains, followed
by the far instances of those same categories. Note that the diagonal is generally weak, indicating little information about
high-level category. b, Bar plot of the discrimination indices for each of the near and far exemplars of each of 16 high-level
categories. Discrimination indices were created by subtracting the average correlation between a high-level category and other
categories that shared expanse and relative distance from the within category correlation. Positive discrimination indices indicate
the presence of high-level category information. Note that only one category (near cities; green bar in b and green circle in a)
produces a significant discrimination index under the most liberal test possible. c, Stimuli from the high-level categories of near
beaches and cities, the two categories with the highest discrimination indices (purple and green bars in b and circles in a). Note that
these two categories of stimuli are also strongly correlated with each other (cyan circle in a) despite sharing only expanse and
relative distance and having different content and visual features. d, Bar plot of the discrimination indices for each of the 16
high-level categories across different relative distances. Discrimination indices were the difference between the correlation be-
tween near and far exemplars of a high-level category (white ellipses in a) and the average correlation between the near and far
exemplars across high-level categories (other values within that square in a). Positive discrimination indices indicate that high-
level category could be decoded across different relative distances. Note that only one category (living rooms) produces a signifi-
cant discrimination index under the most liberal test possible.
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of the three dichotomies (all p � 0.1). PFs showed no scene
discrimination and some categorization by expanse but far more
weakly than that observed in PPA, resulting in a highly significant
region � expanse interaction (F(1,8) � 17.382, p � 0.01). It is
likely that the short presentations times and the scenes we chose,
which did not contain strong central objects, reduced the ability
of object-selective cortex to extract individual objects from the
scenes.

The results from the face-selective regions (supplemental
Item 6, available at www.jneurosci.org as supplemental material)
confirmed they contribute little to scene processing (see below,
Selectivity analysis). Neither of the face-selective regions evi-
denced any categorization by the three dichotomies (all p � 0.2).
Neither region showed much ability to discriminate between
scenes, with FFA showing significant discrimination only for far,
closed scenes and OFA for far, open scenes.

Overall, at least some discrimination was possible based on
the response of a number of cortical regions, although strongest
discrimination was found in EVC, PPA, and TOS. In contrast,
grouping was primarily confined to PPA, EVC, and TOS. Impor-
tantly, EVC grouped primarily by relative distance, whereas PPA
and TOS both grouped primarily by expanse.

Selectivity analysis
So far we have focused on examining scene categorization and
discrimination within regions defined by their category selectiv-
ity. However, the contrast of a preferred and nonpreferred stim-
ulus class (Kanwisher et al., 1997; Epstein and Kanwisher, 1998)
implies that a region might be identified as specialized for a par-
ticular stimulus class because of a difference in response between
these conditions and not necessarily because the region main-
tains any fine-grained representation of that class. Here we took
advantage of our ungrouped design and searched for regions that
showed consistent selectivity among the set of 96 scenes. This
analysis provides an alternate way to identify regions important

in scene representation and allows us to investigate whether any
other regions are also important.

The aim of this analysis was to identify voxels in a whole-
volume search that show consistent selectivity for the set of scene
images. Selectivity was defined by the response profile across all
96 scenes in a single voxel (Erickson et al., 2000). We computed
the consistency of selectivity by calculating the correlation of the
response profile between independent halves of the data. We then
produced maps of the correlation values, deriving cluster thresh-
olds using a randomization procedure to determine which voxels
were significantly selective (see Materials and Methods). Given
the breadth of our scene stimuli, voxels that do not show at least
a modicum of consistency in their selectivity are unlikely to be
involved in scene processing.

We found that the vast majority of the consistently selective
voxels (�76%) lay within our predefined regions, indicating that
these regions primarily contain the core voxels involved in scene-
processing in our volume (Fig. 8a).

We next quantified the average selectivity within each of our
predefined ROIs (Fig. 8b). As expected, significant selectivity
( p � 0.05) was observed only within scene-selective and EVC
ROIs. In EVC, there was significantly greater selectivity in pEVC
than cEVC (F(1,8) � 21.991, p � 0.01). To confirm there was
greater selectivity in scene-selective cortex than in either object-
or face-selective cortex, their selectivity scores were entered into a
two-way ANOVA with selectivity (scene, object, face) and loca-
tion (anterior, posterior) as factors. The only effect observed was
a main effect of selectivity (F(2,16) � 6.769, p � 0.01, Greenhouse–
Geisser corrected) as a result of the greater selectivity observed in
the scene-selective than in either the object-selective (F(1,8) �
8.105, p � 0.05) or face-selective (F(1,8) � 9.069, p � 0.05) ROIs.

Finally, we quantified the amount of overlap between each
ROI and the significantly selective clusters derived from the
whole volume search (Fig. 8c). Again, significant overlap was
present only between the EVC and scene-selective ROIs ( p �
0.05). The advantage for pEVC over cEVC in both mean selec-
tivity and overlap with selective voxels is in keeping with the
theory that PPA has a bias for the peripheral visual field (Levy
et al., 2001; Hasson et al., 2002). In combination, these two
selectivity analyses suggest that our analysis of pEVC and PPA
captured the majority of the scene processing voxels in the
ventral visual pathway.

In summary, using a voxelwise measure of scene selectivity,
based only on responses to scenes, we found that our ROIs cap-
tured the vast majority of voxels with consistent scene selectivity.
Furthermore, selectivity was most stable in PPA, pEVC, and TOS,
consistent with our analyses of categorization and discrimination.

Discussion
Real-world scenes are perhaps the most complex domain for
which specialized cortical regions have been identified. Here, we
demonstrated that, although many visual areas contain informa-
tion about real-world scenes, the structure of the underlying rep-
resentations are vastly different. Critically, we were able to
establish, without making previous assumptions, that expanse is
the primary dimension reflected in PPA. Surprisingly, neither
high-level scene category nor gross content (manmade, natural)
seemed to play a major role in the structure of the representa-
tions. In contrast, pEVC grouped scenes by relative distance and
maintained stronger discrimination of individual scenes than ob-
served in PPA. Furthermore, the structure of representations
observed with fMRI corresponded closely with independent be-
havioral ratings of the scene stimuli, with high correlations in

Figure 7. Discrimination in PPA and pEVC. a, b, Bar plots of the discrimination indices for
each combination of expanse and relative distance. Discrimination indices were created by
subtracting the average between-scene correlation from the average within-scene correlation.
PPA (a) and pEVC (b) exhibit the same pattern of discrimination across near and far, open and
closed scenes, although discrimination was stronger in pEVC than PPA. * indicates the presence
of significant discrimination ( p � 0.05). All error bars indicate the between-subjects SEM. c,
Comparison of discrimination indices for each scene in PPA and pEVC. Each point is a single
scene, whose symbol reflects its expanse and relative distance. Dashed lines indicate the loca-
tion of 0 for both pEVC (x-axis) and PPA ( y-axis). Most points fall on the positive side of these
lines, indicating that the individual scenes can be discriminated from the other scenes. The solid
line is the unity line. Note that most points fall to the right of this line, indicating stronger
discrimination in pEVC than in PPA.
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PPA for ratings of scene openness but not content. This specific
pattern of brain-behavior correlation suggests that subjective
judgments of spatial but not nonspatial aspects of scenes are well
captured by, and perhaps dependent, on the response of PPA.
These findings provide critical insight into the nature of high-
level cortical scene representations and highlight the importance
of determining the structure of representations within a region
beyond whether those representations are distinct enough to be
decoded.

To date, the problem of differentiating between competing
accounts of PPA and determining the specific contributions of
different visual areas to scene processing has been the complexity
and heterogeneity of real-world scenes. First, typical fMRI studies
contrast only a small set of preselected conditions or categories,
presenting blocks of these conditions or averaging over event-
related responses to individual exemplars. These designs are im-
plicitly constrained to show differences only between the tested
categories or conditions, potentially missing other more impor-
tant differences. Second, the analysis of these studies also assumes
that the response to each exemplar within a category is equiva-
lent. Although this assumption is justified in simple domains in
which there are minimal differences between stimuli, the hetero-
geneity of scenes makes it more tenuous. For example, the iden-
tity of individual scenes can be decoded even from the response of
EVC (Kay et al., 2008). Thus, a difference between conditions
might reflect bias in the study design, differences in exemplars, or
differences in the homogeneity of stimuli within conditions (Thi-
erry et al., 2007) rather than revealing a critical difference in scene

representations. Finally, the paucity of con-
ditions in standard designs also makes it dif-
ficult to establish the relative importance of
different factors in scene representations in
a single study (e.g., spatial vs category differ-
ences). The strength of the our approach is
the ability to present a multitude of stimuli,
evaluate the response to each stimulus indi-
vidually, and establish the relative impor-
tance of various factors in defining the
structure of representations.

Taking advantage of an ungrouped de-
sign (supplemental Item 7, available at
www.jneurosci.org as supplemental ma-
terial), we were able to directly contrast
the impact of spatial and nonspatial infor-
mation on scene representations. Our re-
sults further support the theory, based on
activation studies, that PPA is part of net-
work of regions specialized for processing
the spatial layout of scenes (Epstein et al.,
1999; Henderson et al., 2007; Epstein,
2008). The strong grouping of scenes by
expanse (Park et al., 2011) and relative
distance, paired with the absence of
grouping by content, is inconsistent with
theories suggesting that the primary func-
tion of PPA is distinguishing scene catego-
ries (Walther et al., 2009) or, based on
activation studies, representing nonspa-
tial contextual associations between ob-
jects (Bar, 2004; Bar et al., 2008; Gronau et
al., 2008). This is not to suggest that PPA
contains no nonspatial scene informa-
tion; it is possible that other methods that

more directly measure the within voxel selectivity [e.g., adaption
(Drucker and Aguirre, 2009)] would reveal a different pattern of
results. Our results simply show that the dominant factors in
defining the macroscopic response of PPA are spatial. This find-
ing is also consistent with reports of PPA activation during scene
encoding (Epstein et al., 1999; Ranganath et al., 2004; Epstein and
Higgins, 2007), adaption studies showing viewpoint-specific rep-
resentations in PPA (Epstein et al., 2003), and anterograde am-
nesia for novel scene layouts with damage to parahippocampal
regions (Aguirre and D’Esposito, 1999; Barrash et al., 2000; Taka-
hashi and Kawamura, 2002; Mendez and Cherrier, 2003).

Our findings contradict a recent study reporting categoriza-
tion for “natural scene categories” (e.g., forests, mountains, in-
dustry) (Walther et al., 2009) in PPA. However, in this study,
there was no control for spatial factors, including relative dis-
tance and expanse. Therefore, the ability to decode, for example,
highways versus industry could partly reflect the different relative
distances within each category or the fact that industry scenes
were more likely to have a closed expanse. Similarly, the confu-
sions of their classifier between beaches, highways, and moun-
tains could reflect their shared open expanse. This hypothesis is
supported by our inability to decode category when spatial fac-
tors were held constant or to decode category across variations in
relative distance (Fig. 6). Finally, the scenes in this previous study
often contained prominent objects (e.g., cars), or even people,
and this might explain the equivalent decoding accuracy between
PPA and object- and face-selective regions, whereas we found only
weak discrimination and no categorization within these areas.

Figure 8. Selectivity analysis. a, The left column shows the significantly selective clusters of voxels (see Materials and Methods)
for each of three example participants. The right column shows the ROIs for those same participants. Note the large overlap
between the significant clusters and the PPA and pEVC ROIs. b, Plot of the average selectivity correlation within each independently
defined ROI. * indicate significant selective correlations ( p � 0.05). Note that significant selectivity correlations were observed
only in EVC and the scene-selective ROIs. Note also the stronger selectivity correlations in pEVC than cEVC. c, Plot of the proportion
of voxels within significant clusters that overlapped with each ROI. * indicate significant overlap between the ROIs and clusters.
Note again the significant overlap only between the EVC and scene-selective ROIs and the clusters. Note also the greater overlap
between pEVC than cEVC and the clusters. All error bars indicate the between-subject SEM.
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In PPA, it is also possible that low-level features account for
some of the observed grouping effects. In particular, there is a
difference in the spatial frequency envelopes of closed and open
scenes (supplemental Item 8, available at www.jneurosci.org as
supplemental material). Furthermore, it is tempting to suggest
that categorization by expanse might reflect the fact that the open
scenes often contained sky, despite the absence of any such cate-
gorization in EVC. However, this explanation cannot account for
the strong discrimination of open far scenes (which shared sky).
Furthermore, scene inversion, which should not change the effect
of sky or differences in spatial frequencies, has been shown to
have a strong impact on both decoding (Walther et al., 2009) and
response (Epstein et al., 2006) in PPA. Nonetheless, there must be
some visual statistic or combination thereof that is the basis for
grouping by expanse in PPA, because all visual representations,
whether high or low level, must reflect some difference in the
images. The key observation in this study is that the representa-
tions in PPA can properly be called spatial because they (1) differ
significantly from those observed in early visual cortex and (2)
primarily capture differences in spatial information across com-
plex scenes, (3) their structure directly reflects independent be-
havioral judgments of the spatial and not nonspatial structure of
the scenes, and (4) lesions of parahippocampal cortex lead to
impairments in the spatial processing of scenes (Aguirre and
D’Esposito, 1999).

Grouping in EVC likely reflects some low-level features present
in the scenes. However, neither the pixelwise similarity (supplemen-
tal Item 9, available at www.jneurosci.org as supplemental material)
from either the peripheral or central portion of the scenes nor the
spatial frequency (supplemental Item 8, available at www.jneurosci.
org as supplemental material) across the entire image seem to indi-
vidually account for the grouping of scenes by relative distance.
Instead, this grouping likely reflects a complex combination of reti-
notopic, spatial frequency, and orientation information interacting
with the structure of EVC (Kay et al., 2008).

There are two possible sources of spatial information in PPA.
First, position information has been reported in PPA (Arcaro et
al., 2009) (but see MacEvoy and Epstein, 2007) and other high-
level visual areas (Schwarzlose et al., 2008; Kravitz et al., 2010),
suggesting feedforward processing of spatial information. PPA
might also receive spatial information from its connections with
the retrosplenial cortex, posterior cingulate, and parietal cortex
(Kravitz et al., 2011). Additional research is needed to address this
question, but ultimately, which factors contribute to the forma-
tion of a representation and its actual structure are distinct.

The push/pull relationship between discrimination and cate-
gorization observed in PPA and pEVC suggests that low-level
representations may be important in supporting quick discrimi-
nations of complex stimuli (Bacon-Macé et al., 2007; Greene and
Oliva, 2009a), whereas high-level representations are specialized
to support more abstract or specialized actions (e.g., navigation).
Thus, discrimination of complex stimuli based on the response of
EVC (Kay et al., 2008) must be interpreted with reference to the
particular tasks that response is likely to support, especially given
reports that the presence of stimulus information in a region is
not necessarily reflected in behavior (Williams et al., 2007;
Walther et al., 2009). Our results demonstrate that the critical
factors that define high-level representations may not be present
within or even predictable from the response of EVC, nor can
EVC be ignored given the clear inheritance of many aspects of
scene representation by PPA; rather, the response of both EVC
and high-level cortex must be considered in any account of com-
plex visual processing.

In conclusion, we have shown with a data-driven approach
that spatial and not high-level category information is the dom-
inant factor in how PPA categorizes scenes. Although informa-
tion about scene was present in other visual regions, including
EVC, grouping of scenes varied enormously. These results dem-
onstrate the importance of understanding the structure of repre-
sentations beyond whether individual presented items can be
decoded.
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